
Proceedings of DiGRA 2011 Conference: Think Design Play.

© 2011 Authors & Digital Games Research Association DiGRA. Personal and educational classroom use of

this paper is allowed, commercial use requires specific permission from the author.

Software migration applied to
Commodore BASIC video games

Craig Harrington
Flinders University

Sturt Road

Bedford Park, SA 5042

craig.harrington@flinders.edu.au

Denise de Vries
Flinders University

Sturt Road

Bedford Park, SA 5042

+61 8 8201 3639

denise.devries@flinders.edu.au

ABSTRACT
Migration as a means of preserving legacy software is an under-utilised approach which

offers an alternative perspective to the more commonly used paradigm of either system or

application level emulation. A prototype system to translate legacy BASIC software for

the Commodore VIC-20 computer to a combination of HTML5 and Javascript was

developed and serves as a basis for ongoing work.

The preliminary system has been tested by performing an unassisted (automatic)

translation of a Melbourne House title, “Grand Prix” (Ramshaw, 1983), to Javascript.

This game was found to run at an acceptable frame rate within a web browser on a

relatively recent Core2 Duo system. Future work will involve extending the system to

work with a greater range of BASIC programs and optimising the generated Javascript

for readability and performance. Eventually titles which include machine language

subroutines and also games written purely in 6502 machine language will be supported

using a similar framework.

Keywords
Software preservation, migration, translation, BASIC, digital heritage, videogame

INTRODUCTION
This work seeks to document issues involved in the development of a software tool for

the migration of legacy video games to a contemporary language, suitable for running

within a web browser. This work comprises a part of the “Play It Again” project, a

multidisciplinary effort “conducting research into the largely unknown histories of 1980s

game development in Australia and New Zealand, ensuring that local titles are

documented, preserved and make it into national collections” (Swalwell & de Vries,

2013).

Emulation has been used extensively to provide access to legacy titles, with notable

success, however it is not a panacea. Each new iteration of computer hardware requires

mailto:craig.harrington@flinders.edu.au
mailto:denise.devries@flinders.edu.au

 -- 50 --

the emulators to be rewritten (or emulated themselves), unless some solution along the

lines of Rothenberg’s (1999) Emulation Virtual Machine is employed.

The use of software migration as an alternative technique to provide access to legacy

titles is less common, however may offer some benefit. For example, emulators typically

require proprietary software, such as a copy of the operating system for the platform in

question. This practice places the use of emulation in a legal grey area, where legal action

is possible, although unlikely to be carried out in practice. Migration may circumvent this

issue by translating the legacy operating system library calls to a modern equivalent,

providing similar functionality.

The BASIC programming language was often the language of choice for homebrew

software coded by home computer enthusiasts and hobbyists. Swalwell and de Vries

(2013) echo Barnes’ (1982) assertion that “whilst BASIC was sometimes maligned as a

crude and even ‘disgusting’ language for amateurs, it may be that as a language, it

survives the passage of time better than ‘professional’ languages”. In particular, so-called

“type-in” programs published in hobbyist magazines were quite often written in BASIC.

The Commodore VIC-20 system was chosen as the legacy platform of interest due to its

relative simplicity and similarity to the more popular Commodore 64 platform. The

version of the BASIC programming language used in each machine is identical. The

VIC-20 contains a more primitive graphics chip, which lacks tile-based (or sprite)

graphics, making it less complex to implement.

A prototype system for migration was constructed in Javascript, containing enough

functionality to allow for the execution of BASIC programs. An HTML5 Canvas element

provides a mechanism for character graphics to be displayed which were obtained by

examining the data from a read-only memory (ROM) dump of the original machine.

A Javascript function library provides equivalents to various BASIC statements. Initially,

the functions were tested by manually translating the legacy code from its original form

to Javascript. Overall, the Javascript functions aim to replicate the functionality of the

various BASIC statements but some differences are unavoidable. For example, keyboard

input is event-driven in the browser environment rather than polled continuously, as in

the original hardware (or an emulator).

A parser and lexer for Commodore BASIC V2 was constructed using the Python

scripting language by extending an existing Dartmouth BASIC interpreter which was

included as an example with the PLY lexer and parser package (Beazley, 2001). This

involved adding in support for additional keywords, relational operators and also string

and integer data types.

Another Python script processes the parsed program and outputs the equivalent Javascript

function calls. Due to the absence of branching instructions in Javascript, a switch

construct was used to achieve flow control, with a case statement for each line of the

original source. This approach is analogous to that of the Sega Genesis Java translator

(Delwadia, 2007).

Strictly, only the targets of branches are required to be separate cases in the switch

statement, however, including more case statements than necessary allows for finer

granularity in the timing of the translated program. Since BASIC programs are

 -- 51 --

interpreted on the original hardware (or an emulator), calculating the precise number of

CPU cycles (and hence, time) a given BASIC statement takes to execute is not trivial.

At the time of writing this abstract, the naive approach employed is to assume every line

of the program takes the same amount of time to execute, irrespective of its content. The

effect this has upon gameplay is negligible, being mitigated by the fact that BASIC

programs tend to be less responsive to user input than titles written purely in machine

code, in any case. This makes user evaluation slightly problematic since even titles

running on original hardware may be judged poorly as a result.

Future work will involve extending the system to work with BASIC programs which

include machine-language subroutines and also games written purely in machine

language. The graphics routines may be rewritten to use libraries with better performance,

such as WebGL. Sound capabilities have yet to be implemented. In addition, it is hoped

that the unstructured BASIC code can be manipulated into a more structured form, taking

advantage of the more modern control-flow mechanisms in the Javascript language,

whilst retaining the semantics of the original code.

BIO
Craig Harrington holds a Bachelor of Science (with Honours) from Flinders University.

He is currently studying full-time as a PhD candidate in the School of Computer Science,

Engineering and Mathematics at Flinders University. His current research is focused upon

the development of software tools to migrate legacy applications to contemporary

languages, as a part of the “Play It Again” project.

Dr Denise de Vries has, since the early 1980s, developed commercial complex database

systems for a variety of industry domains including local government, airline, public

libraries, para-medical, diet and nutrition, commercial cleaning, automotive parts

manufacturing, building and construction, inventory control, conference organisation and

commercial photography. Based on this industry experience she researches techniques to

preserve digital history and data semantics including techniques to deal with changes to

information in a database such as structural change, semantic change and constraint

change.

ACKNOWLEDGMENTS
The authors would like to thank the following organisations for their support: The

Flinders University of South Australia, The University of Melbourne, Victoria University

of Wellington, Australian Centre for the Moving Image, The New Zealand Film Archive

and Berlin Computerspiele Museum.

“Play It Again: Creating a Playable History of Australasian Digital Games, for Industry,

Community and Research Purposes” is supported under the Australian Research Councils

(ARC) Linkage Projects funding scheme (project number LP120100218).

BIBLIOGRAPHY
Barnes, J. G. P. (1982) “The Development of Cultures in Programming Languages” in

Ninth Australian Computer Conference (Sale, A.H.J. & Hawthorne, G., eds),

ACS. pp. 9-21.

Beazley, D. M. (2001) PLY 3.4 (Python Lex-Yacc) software, URL:

http://www.dabeaz.com/ply/ply.html.

http://www.dabeaz.com/ply/ply.html

 -- 52 --

Delwadia, Vipul (2007) “SGJ: Sega Genesis Java”, Victoria University of Wellington,

unpublished Honours thesis, available online, URL:

http://eprints.rclis.org/16127/.

Ramshaw, C. (1982) VIC Innovative Computing, Melbourne House, Leighton

Buzzard, UK.

Rothenberg, J. (1999) “Avoiding Technological Quicksand: Finding a Viable

Technical Foundation for Digital Preservation”, CLIR reports, Council on

Library and Information Resources.

Swalwell, Melanie (2009) “Towards the Preservation of Local Computer Game

Software: Challenges, strategies, reflections”, Convergence: The International

Journal of Research into New Media Technologies, (special issue on cultural

memory and digital preservation, ed. Will Straw and Jessica Santone), vol. 15,

no. 3, Aug, pp. 263-279.

Swalwell, Melanie, Denise de Vries (2013) “Collecting Code: Challenges and

strategies”, SCAN: Journal of Media Arts Culture (the In/Visibilities of Code

special issue), vol. 10, no. 2, available online, URL:

http://scan.net.au/scn/journal/vol10number2/Melanie-Swalwell.html.

http://eprints.rclis.org/16127/
http://scan.net.au/scn/journal/vol10number2/Melanie-Swalwell.html

